Effective transfer learning for hyperspectral image classification with deep convolutional neural networks
2019
Hyperspectral imaging is a rich source of data, allowing for multitude of effective applications. On the other hand such imaging remains challenging because of large data dimension and, typically, small pool of available training examples. While deep learning approaches have been shown to be successful in providing effective classification solutions, especially for high dimensional problems, unfortunately they work best with a lot of labelled examples available. To alleviate the second requirement for a particular dataset the transfer learning approach can be used: first the network is pre-trained on some dataset with large amount of training labels available, then the actual dataset is used to fine-tune the network. This strategy is not straightforward to apply with hyperspectral images, as it is often the case that only one particular image of some type or characteristic is available. In this paper, we propose and investigate a simple and effective strategy of transfer learning that uses unsupervised pre-training step without label information. This approach can be applied to many of the hyperspectral classification problems. Performed experiments show that it is very effective in improving the classification accuracy without being restricted to a particular image type or neural network architecture. An additional advantage of the proposed approach is the unsupervised nature of the pre-training step, which can be done immediately after image acquisition, without the need of the potentially costly expert's time.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
68
References
1
Citations
NaN
KQI