Sorption properties of NO2 gas and its strong influence on hole concentration of H-terminated diamond surfaces

2010 
The hole concentration of hydrogen-terminated diamond surfaces was studied during exposure to different concentrations of NO2 gas. The hole concentration increased during adsorption of NO2 molecules on the diamond surface, and decreased when the exposure stopped and NO2 molecules desorbed from the surface. The increase in hole concentration can be directly linked to the NO2 concentration. The low NO2 concentration in air (∼20 ppb) is responsible the hole concentration normally measured in air, and with increasing NO2 concentration the maximum hole concentration increases even more. The time evolution of hole concentration was analyzed using the Elovich sorption model. Further analysis based on the Ritchie model indicated that an adsorbed NO2 molecule occupies two different surface sites. Temperature-dependent measurements indicate low activation energy between 0.1 and 0.2 eV.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    22
    Citations
    NaN
    KQI
    []