Modulation of inhibitory and excitatory fast neurotransmission in the rat CNS by heavy water (D2O).

2015 
The effects of heavy water (deuterium oxide, D2O) on GABAergic and glutamatergic spontaneous and evoked synaptic transmission were investigated in acute brain slice and isolated “synaptic bouton” preparations of rat hippocampal CA3 neurons. The substitution of D2O for H2O reduced the frequency and amplitude of GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) in a concentration-dependent manner but had no effect on glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs). In contrast, for evoked synaptic responses in isolated neurons, the amplitude of both inhibitory and excitatory postsynaptic currents (eIPSCs and eEPSCs) was decreased in a concentration-dependent manner. This was associated with increases of synaptic failure rate (Rf) and paired-pulse ratio (PPR). The effect was larger for eIPSCs compared with eEPSCs. These results clearly indicate that D2O acts differently on inhibitory and excitatory neurotransmitter release machinery. Furthermore, D2O significantly suppressed...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    2
    Citations
    NaN
    KQI
    []