Mixed Noise Removal in Hyperspectral Image via Low-Fibered-Rank Regularization

2019 
The tensor tubal rank, defined based on the tensor singular value decomposition (t-SVD), has obtained promising results in hyperspectral image (HSI) denoising. However, the framework of the t-SVD lacks flexibility for handling different correlations along different modes of HSIs, leading to suboptimal denoising performance. This article mainly makes three contributions. First, we introduce a new tensor rank named tensor fibered rank by generalizing the t-SVD to the mode-k t-SVD, to achieve a more flexible and accurate HSI characterization. Since directly minimizing the fibered rank is NP-hard, we suggest a three-directional tensor nuclear norm (3DTNN) and a three-directional log-based tensor nuclear norm (3DLogTNN) as its convex and nonconvex relaxation to provide an efficient numerical solution, respectively. Second, we propose a fibered rank minimization model for HSI mixed noise removal, in which the underlying HSI is modeled as a low-fibered-rank component. Third, we develop an efficient alternating direction method of multipliers (ADMMs)-based algorithm to solve the proposed model, especially, each subproblem within ADMM is proven to have a closed-form solution, although 3DLogTNN is nonconvex. Extensive experimental results demonstrate that the proposed method has superior denoising performance, as compared with the state-of-the-art competing methods on low-rank matrix/tensor approximation and noise modeling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    49
    Citations
    NaN
    KQI
    []