Remain Useful Life Prediction of Rolling bearings Based on Exponential Model Optimized by Gradient Method

2021 
Abstract Remaining useful life (RUL) using exponential model (EM) prediction has been a hot research topic in the construction of prognostics health management (PHM) systems. However, in RUL prediction of rolling bearings, the EM 1) depends on the appropriate first prediction time (FPT), 2) requires reliable methods to optimize the model. Therefore, an improved EM is developed to predict the RUL of rolling bearings. Firstly, an adaptive method based on kurtosis and root mean square (RMS) of bearing vibration signals is used to determine the appropriate FPT. Secondly, gradient descent method is used to reliably optimize the EM. A commonly used bearing degradation datasets are analyzed to show the advantages of the present method. Compared with the traditional EM, the method can not only adaptively determine FPT, but also predict RUL more accurately.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []