Tree boosting for learning EFT parameters
2021
We present a new tree boosting algorithm designed for the measurement of parameters in the context of effective field theory (EFT). To construct the algorithm, we interpret the optimized loss function of a traditional decision tree as the maximal Fisher information in Poisson counting experiments. We promote the interpretation to general EFT predictions and develop a suitable boosting method. The resulting "Boosted Information Tree" algorithm approximates the score, the derivative of the log-likelihood function with respect to the parameter. It thus provides a sufficient statistic in the vicinity of a reference point in parameter space where the estimator is trained. The training exploits per-event information of likelihood ratios for different theory parameter values, available in the simulated EFT data sets.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
31
References
3
Citations
NaN
KQI