Genetic Control of Severe Egg-Induced Immunopathology and IL-17 Production in Murine Schistosomiasis

2009 
Infection with the trematode parasite Schistosoma mansoni results in a distinct heterogeneity of disease severity, both in humans and in an experimental mouse model. Severe disease is characterized by pronounced hepatic egg-induced granulomatous inflammation in a proinflammatory cytokine environment, whereas mild disease corresponds with reduced hepatic inflammation in a Th2 skewed cytokine environment. This marked heterogeneity indicates that genetic differences play a significant role in disease development, yet little is known about the genetic basis of dissimilar immunopathology. To investigate the role of genetic susceptibility in murine schistosomiasis, quantitative trait loci analysis was performed on F2 progeny derived from SJL/J and C57BL/6 mice, which develop severe and mild pathology, respectively. In this study, we show that severe liver pathology in F2 mice 7 wk after infection significantly correlated with an increase in the production of the proinflammatory cytokines IL-17, IFN-γ, and TNF-α by schistosome egg Ag-stimulated mesenteric lymph node cells. Quantitative trait loci analysis identified several genetic intervals controlling immunopathology as well as IL-17 and IFN-γ production. Egg granuloma size exhibited significant linkage to two loci, D4Mit203 and D17Mit82, both of which were inherited in a BL/6 dominant manner. Furthermore, a significant reduction of hepatic granulomatous inflammation and IL-17 production in interval-specific congenic mice demonstrated that the two identified genetic loci have a decisive effect on the development of immunopathology in murine schistosomiasis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    29
    Citations
    NaN
    KQI
    []