Spontaneous flexoelectricity and band engineering in MS2 (M = Mo, W) nanotubes.

2021 
Spontaneous flexoelectricity in transition metal dichalcogenide (TMD) nanotubes is critical to the design of new energy devices. However, the electronic properties adjusted by the flexoelectric effect in TMD nanotubes remain vague. In this work, we investigate the effect of flexoelectricity on band engineering in single- and double-wall MS2 (M = Mo, W) nanotubes with different diameters based on first-principles calculations and an atomic-bond-relaxation method. We find that the energy bandgap reduces and the polarization and flexoelectric voltage increase with decreasing diameter of single-wall MS2 nanotubes. The polarization charges promoted by the flexoelectric effect can lead to a straddling-to-staggered bandgap transition in the double-wall MS2 nanotubes. The critical diameters for bandgap transition are about 3.1 and 3.6 nm for double-wall MoS2 and WS2 nanotubes, respectively, which is independent of chirality. Our results provide guidance for the design of new energy devices based on spontaneous flexoelectricity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    0
    Citations
    NaN
    KQI
    []