Source terms and attenuation lengths for estimating shielding requirements or dose analyses of proton therapy accelerators.
2013
: Proton therapy accelerators in the energy range of 100-300 MeV could potentially produce intense secondary radiation, which must be carefully evaluated and shielded for the purpose of radiation safety in a densely populated hospital. Monte Carlo simulations are generally the most accurate method for accelerator shielding design. However, simplified approaches such as the commonly used point-source line-of-sight model are usually preferable on many practical occasions, especially for scoping shielding design or quick sensitivity studies. This work provides a set of reliable shielding data with reasonable coverage of common target and shielding materials for 100-300 MeV proton accelerators. The shielding data, including source terms and attenuation lengths, were derived from a consistent curve fitting process of a number of depth-dose distributions within the shield, which were systematically calculated by using MCNPX for various beam-target shield configurations. The general characteristics and qualities of this data set are presented. Possible applications in cases of single- and double-layer shielding are considered and demonstrated.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
8
References
4
Citations
NaN
KQI