A Multistakeholder Approach to the Airport Gate Assignment Problem: Application of Fuzzy Theory for Optimal Performance Indicator Selection.

2021 
Airport gate assignment performance indicator selection is a complicated decision-making problem with strong subjectivity and difficulty in measuring the importance of each indicator. A better selection of performance indicators (PIs) can greatly increase the airport overall benefit. We adopt a multicriteria decision-making approach to quantify qualitative PIs and conduct subsequent selection using the fuzzy clustering method. First, we identify 21 commonly used PIs through literature review and survey. Subsequently, the fuzzy analytic hierarchy process technique was employed to obtain the selection criteria weights based on the relative importance of significance, availability, and generalisability. Further, we aggregated the selection criteria weights and experts' score to evaluate each PI for the clustering process. The fuzzy-possibilistic product partition c-means algorithm was applied to divide the PIs into different groups based on the three selection criteria as partitioning features. The cluster with highest weights of the centre was identified as the very high-influence cluster, and 10 PIs were identified as a result. This study revealed that the passenger-oriented objective is the most important performance criterion; however, the relevance of the airport/airline-oriented and robustness-oriented performance objectives was highlighted as well. It also offers a scientific approach to determine the objective functions for future gate assignment research. And, we believe, through slight modifications, this model can be used in other airports, other indicator selection problems, or other scenarios at the same airport to facilitate policy making and real situation practice, hence facilitate the management system for the airport.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []