Label Co-occurrence Learning with Graph Convolutional Networks for Multi-label Chest X-ray Image Classification

2020 
Existing multi-label medical image learning tasks generally contain rich relationship information among pathologies such as label co-occurrence and interdependency, which is of great importance for assisting in clinical diagnosis and can be represented as the graph-structured data. However, most state-of-the-art works only focus on regression from the input to the binary labels, failing to make full use of such valuable graph-structured information due to the complexity of graph data. In this paper, we propose a novel label co-occurrence learning framework based on Graph Convolution Networks (GCNs) to explicitly explore the dependencies between pathologies for the multi-label chest X-ray (CXR) image classification task, which we term the “CheXGCN”. Specifically, the proposed CheXGCN consists of two modules, i.e., the image feature embedding (IFE) module and label co-occurrence learning (LCL) module. Thanks to the LCL model, the relationship between pathologies is generalized into a set of classifier scores by introducing the word embedding of pathologies and multi-layer graph information propagation. During end-to-end training, it can be flexibly integrated into the IFE module and then adaptively recalibrate multi-label outputs with these scores. Extensive experiments on the ChestX-ray14 and CheXpert datasets have demonstrated the effectiveness of CheXGCN as compared with the state-of-the-art baselines.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    26
    Citations
    NaN
    KQI
    []