Evaluation of different methods for assessing bioavailability of DDT residues during soil remediation

2018 
Abstract Compared to the total chemical concentration, bioavailability is a better measurement of risks of hydrophobic organic contaminants (HOCs) to biota in contaminated soil or sediment. Many different bioavailability estimation methods have been introduced to assess the effectiveness of remediation treatments. However, to date the different methods have rarely been evaluated against each other, leading to confusions in method selection. In this study, four different bioavailability estimation methods, including solid phase microextraction (SPME) and polyethylene passive sampling (PE) aiming to detect free chemical concentration ( C free ), and Tenax desorption and isotope dilution method (IDM) aiming to measure chemical accessibility, were used in parallel to estimate in bioavailability of DDT residues (DDXs) in a historically contaminated soil after addition of different black carbon sorbents. Bioaccumulation into earthworm ( Eisenia fetida ) was measured concurrently for verification. Activated carbon or biochar amendment at 0.2–2% decreased earthworm bioaccumulation of DDXs by 83.9–99.4%, while multi-walled carbon nanotubes had a limited effect (4.3–20.7%). While all methods correctly predicted changes in DDX bioavailability after black carbon amendment, passive samplers offered more accurate predictions. Predicted levels of DDXs in earthworm lipid using the estimated bioavailability and empirical BCFs matched closely with the experimentally derived tissue concentrations. However, Tenax and IDM overestimated bioavailability when the available DDX levels were low. Our findings suggested that both passive samplers and bioaccessibility methods can be used in assessing remediation efficiency, presenting flexibility in method selection. While accessibility-oriented methods offer better sensitivity and shorter sampling time, passive samplers may be more advantageous because of their better performance and computability for in situ deployment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    9
    Citations
    NaN
    KQI
    []