Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper Belt object

2019 
INTRODUCTION The Kuiper Belt is a broad, torus-shaped region in the outer Solar System beyond Neptune’s orbit. It contains primordial planetary building blocks and dwarf planets. NASA’s New Horizons spacecraft conducted a flyby of Pluto and its system of moons on 14 July 2015. New Horizons then continued farther into the Kuiper Belt, adjusting its trajectory to fly close to the small Kuiper Belt object (486958) 2014 MU 69 (henceforth MU 69 ; also informally known as Ultima Thule). Stellar occultation observations in 2017 showed that MU 69 was ~25 to 35 km in diameter, and therefore smaller than the diameter of Pluto (2375 km) by a factor of ~100 and less massive than Pluto by a factor of ~10 6 . MU 69 is located about 1.6 billion kilometers farther from the Sun than Pluto was at the time of the New Horizons flyby. MU 69 ’s orbit indicates that it is a “cold classical” Kuiper Belt object, thought to be the least dynamically evolved population in the Solar System. A major goal of flying past this target is to investigate accretion processes in the outer Solar System and how those processes led to the formation of the planets. Because no small Kuiper Belt object had previously been explored by spacecraft, we also sought to provide a close-up look at such a body’s geology and composition, and to search for satellites, rings, and evidence of present or past atmosphere. We report initial scientific results and interpretations from that flyby. RATIONALE The New Horizons spacecraft completed its MU 69 flyby on 1 January 2019, with a closest approach distance of 3538 km—less than one-third of its closest distance to Pluto. During the high-speed flyby, made at 14.4 km s −1 , the spacecraft collected ~50 gigabits of high-resolution imaging, compositional spectroscopy, temperature measurements, and other data on this Kuiper Belt object. We analyzed the initial returned flyby data from the seven scientific instruments carried on the spacecraft: the Ralph multicolor/panchromatic camera and mapping infrared composition spectrometer; the Long Range Reconnaissance Imager (LORRI) long–focal length panchromatic visible imager; the Alice extreme/far ultraviolet mapping spectrograph; the Radio Experiment (REX); the Solar Wind Around Pluto (SWAP) solar wind detector; the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) high-energy charged particle spectrometer; and the Venetia Burney Student Dust Counter (VBSDC), a dust impact detector. RESULTS Imaging of MU 69 showed it to be a bilobed, contact binary. MU 69 ’s two lobes appear to have formed close to one another, becoming an orbiting pair that subsequently underwent coupled tidal and orbital evolution to merge into the contact binary we observe today. The object rotates on its axis every 15.92 hours; its rotation pole is inclined approximately 98° to the plane of its heliocentric orbit. Its entire surface has a low visible-wavelength reflectivity (albedo) but displays brighter and darker regions across its surface, ranging from 5 to 12% reflectivity. The brightest observed regions are the “neck” of MU 69, where the two lobes are joined, and two discrete bright spots inside the largest crater-like feature on the object’s surface. Although MU 69 ’s albedo varies substantially across its surface, it is uniformly red in color, with only minor observed color variations. This coloration likely represents a refractory residue from ices and organic molecules processed by ultraviolet light and cosmic rays. Spectra of the surface revealed tentative absorption band detections due to water ice and methanol. The geology of MU 69 consists of numerous distinct units but shows only a small number of craters, providing evidence that there is a deficit of Kuiper Belt objects smaller than ~1 km in diameter, and that there is a comparatively low collision rate in its Kuiper Belt environment compared to what would be expected in a collisional equilibrium population. A three-dimensional shape model derived from the images shows MU 69 is not simply elongated but also flattened. The larger lobe was found to be lenticular, with dimensions of approximately 22 × 20 × 7 km (uncertainty 69 . CONCLUSION Both MU 69 ’s binarity and unusual shape may be common among similarly sized Kuiper Belt objects. The observation that its two lobes are discrete, have retained their basic shapes, and do not display prominent deformation or other geological features indicative of an energetic or disruptive collision indicates that MU 69 is the product of a gentle merger of two independently formed bodies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    99
    References
    101
    Citations
    NaN
    KQI
    []