Influence of Inclusion on Corrosion Behavior of E36 Grade Low-alloy Steel in Cargo Oil Tank Bottom Plate Environment

2014 
Corrosion behavior of low-alloy steel was investigated in simulated cargo oil tank (COT) bottom plate service environment (10% NaCl solution, pH = 0.85). The corrosion behavior of inclusion was studied by in-situ scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It was found that pitting corrosion was inclined to occur around the place where inclusions exist. After initial corrosion, an area of 10 — 20 µm in diameter was formed as a circinate cathode around the edge of inclusion. MnS inclusion dissolved in the simulated COT corrosion solution before low-alloy steel matrix, and pitting was formed at the place where MnS dissolved. TiO2 inclusion dissolved in the simulated COT corrosion solution after low-alloy steel matrix, and pitting was formed at the place where steel matrix dissolved. The corrosion tended to occur at the area where the curvature radius of inclusion is smaller. The size of round TiO2 inclusions had little influence on corrosion behavior in this certain environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    6
    Citations
    NaN
    KQI
    []