Purification and properties of guanosine triphosphate cyclohydrolase II from Escherichia coli.
1975
Abstract An enzyme that uses GTP as substrate for the formation in stoichiometric quantities of formate, inorganic pyrophosphate, and 2,5-diamino-6-hydroxy-4-(ribosylamino)pyrimidine-5'-phosphate has been purified 2200-fold from extracts of Escherichia coli B. This enzyme is named GTP cyclohydrolase II to distinguish it from a previously studied E. coli enzyme, named GTP cyclohydrolase (and called GTP cyclohydrolase I in this paper), that catalyzes the first of a series of enzymatic reactions leading to the biosynthesis of the pteridine portion of folic acid (Burg, A. W., and Brown, G. M. (1968) J. Biol. Chem. 243, 2349-2358). Some of the properties of GTP cyclohydrolase II are: (a) divalent cations are required for activity (Mg2+ is most effective); (b) its molecular weight, estimated by filtration on Sephadex G-200, is 44,000; (c) the K-m for GTP is 41 mum; (d) its pH optimum is 8.5; and (e) its activity is inhibited by inorganic pyrophosphate, one of the products of the reaction. Compounds not used as substrate are: GDP, GMP, guanosine, dGTP, ATP, ITP, and XTP. Properties a, b, c, and e (above), as well as the nature of the products, distinguish this enzyme from GTP cyclohydrolase I. Since GTP cyclohydrolase II apparently is not concerned with the biosynthesis of folic acid, the possible physiological role of this enzyme in the biosynthesis of riboflavin is considered in the light of the present investigations and the previously published work on riboflavin biosynthesis by other investigators.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
13
References
113
Citations
NaN
KQI