X-Ray Radiation Characteristics of Nested-Wire Array Implosion in Sino-Russian Joint Z-pinch Experiments on Angara-5-1

2005 
We report and discuss the results of x-ray radiation measurements in the Sino-Russian joint Z-Pinch experiments on Angara-5-1 facility with a load current of 2.5–3.6 MA. The measurements were conducted by using an x-ray power meter (XRPM) and a time-resolved one-dimensional x-ray imaging system developed in China Academy of Engineering Physics. The experimental results indicate that an x-ray power-platform prior to a main peak and a less intensive sub-peak after the main peak in the waveform exist for the nested-wire array implosions, and the radiation process is relatively faster than that in the case of the single array. Laser shadowgraph of the imploding plasma suggests that the prior power-platform is a result of the collision of the inner-outer plasma layers. The faster radiation process of nested array implosion can be explained by analysing the corresponding result of the time-resolved one-dimensional imaging system, which demonstrates a better axial imploding uniformity and synchronization. In comparison with x-ray diode, the XRPM yields a higher height of x-ray power-platform due to its flat energy response. The sub-peak after the main peak is proposed to be a result of the later-time additional implosion of plasma.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    6
    Citations
    NaN
    KQI
    []