Optimal visual simulation of the self-tracking combustion of the infrared decoy based on the particle system
2016
The high-efficiency simulation test of military weapons has a very important effect on the high cost of the actual combat test and the very demanding operational efficiency. Especially among the simulative emulation methods of the explosive smoke, the simulation method based on the particle system has generated much attention. In order to further improve the traditional simulative emulation degree of the movement process of the infrared decoy during the real combustion cycle, this paper, adopting the virtual simulation platform of OpenGL and Vega Prime and according to their own radiation characteristics and the aerodynamic characteristics of the infrared decoy, has simulated the dynamic fuzzy characteristics of the infrared decoy during the real combustion cycle by using particle system based on the double depth peeling algorithm and has solved key issues such as the interface, coordinate conversion and the retention and recovery of the Vega Prime’s status. The simulation experiment has basically reached the expected improvement purpose, effectively improved the simulation fidelity and provided theoretical support for improving the performance of the infrared decoy.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
6
References
0
Citations
NaN
KQI