Incorporating para‐phenylene as an electron‐donating group into graphitic carbon nitride for efficient charge separation

2019 
: Low charge-separation transport efficiency resulting from structural defects largely limits photocatalytic hydrogen production over polymeric graphitic carbon nitride (PCN) photocatalyst. Herein, an electron-donating group, namely p-phenylene, is incorporated into PCN by a polycondensation reaction between carbon nitride and p-phenylenediamine (or p-benzoquinone) to repair the structural defects. The p-phenylene-modified PCN exhibits an almost fivefold increase in H2 evolution, a threefold increase in photocurrent density, and higher nonradiative rate (0.285 ns-1 ). Spectroscopic studies confirm that p-phenylene tends to bridge the heptazine-based oligomers through a polycondensation reaction. Theoretical calculations reveal that anchoring of the heptazine units by p-phenylene induces localization of h+ and e- on the phenylene and melem moieties, respectively, which effectively separates the charge carriers. This strategy provides an opportunity to overcome structural defects in carbon nitride for efficient photocatalytic solar energy conversion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    14
    Citations
    NaN
    KQI
    []