Reactivity effect breakdown calculations with deterministic and stochastic perturbations analysis – JEFF-3.1.1 to JEFF3.2T1 (BRC-2009) actinides application

2013 
JEFF-3.1.1 is the reference nuclear data library in CEA for the design calculations of the next nuclear power plants. The validation of the new neutronics code systems is based on this library and changes in nuclear data should be looked at closely. Some new actinides evaluation files at high energies have been proposed by CEA/Bruyeres-le-Chatel in 2009 and have been integrated in JEFF3.2T1 test release. For the new release JEFF-3.2, CEA will build new evaluation files for the actinides, which should be a combination of the new evaluated data coming from BRC-2009 in the high energy range and improvements or new evaluations in the resolved and unresolved resonance range from CEA-Cadarache. To prepare the building of these new files, benchmarking the BRC-2009 library in comparison with the JEFF-3.1.1 library was very important. The crucial points to evaluate were the improvements in the continuum range and the discrepancies in the resonance range. The present work presents for a selected set of benchmarks the discrepancies in the effective multiplication factor obtained while using the JEFF-3.1.1 or JEFF-3.2T1 library with the deterministic code package ERANOS/PARIS and the stochastic code TRIPOLI-4. They have both been used to calculate cross section perturbations or other nuclear data perturbations when possible. This has permittted to identify the origin of the discrepancies in reactivity calculations. In addition, this work also shows the importance of cross section processing validation. Actually, some fast neutron spectrum calculations have led to opposite tendancies between the deterministic code package and the stochastic code. Some particular nuclear data (MT=5 in ENDF terminology) seem to be incompatible with the current MERGE or GECCO processing codes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []