Involvement of the Molybdenum Cofactor Biosynthetic Machinery in the Maturation of the Escherichia coli Nitrate Reductase A

2004 
Abstract The maturation of Escherichia coli nitrate reductase A requires the incorporation of the Mo-(bis-MGD) cofactor to the apoprotein. For this process, the NarJ chaperone is strictly required (Blasco, F., Dos Santos, J. P., Magalon, A., Frixon, C., Guigliarelli, B., Santini, C. L., and Giordano, G. (1998) Mol. Microbiol. 28, 435–447). We report the first description of protein interactions between molybdenum cofactor biosynthetic proteins (MogA, MoeA, MobA, and MobB) and the aponitrate reductase (NarG) using a bacterial two-hybrid approach. Two conditions have to be satisfied to allow the visualization of the interactions, (i) the presence of an active and mature molybdenum cofactor and (ii) the presence of the NarJ chaperone and of the NarG structural partner subunit, NarH. Formation of tungsten-substituted cofactor prevents the interaction between NarG and the four biosynthetic proteins. Our results suggested that the final stages of molybdenum cofactor biosynthesis occur on a complex made up by MogA, MoeA, MobA, and MobB, which is also in charge with the delivery of the mature cofactor onto the aponitrate reductase A in a NarJ-assisted process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    49
    Citations
    NaN
    KQI
    []