Molecular identification, phylogenetic analysis and antifungal susceptibility patterns of Aspergillus nidulans complex and Aspergillus terreus complex isolated from clinical specimens

2020 
Abstract Objective Aspergillus sections Terrei and Nidulantes are the less common causes of invasive aspergillosis and pulmonary aspergillosis (PA) in immunocompromised patients when compared to A. fumigatus and A. flavus. Identifying these fungi as the infectious agent is crucial because of the resistance to amphotericin B (AMB) and increased lethality. The aim of this study was to identify the molecular status, evaluate the genetic diversity and examine the antifungal susceptibility profile of the uncommon Aspergillus species. Forty-five uncommon Aspergillus species were identified based on the microscopic and macroscopic criteria. Then, the molecular identification was performed using the sequencing beta tubulin (benA) gene. In vitro antifungal susceptibility to amphotericin B (AMB), itraconazole (ITC), ravuconazole (RAV), voriconazole (VRC), caspofungin (CFG) isavuconazole (ISA) and posaconazole (POS) test was performed according to the CLSI M38-A2 guidelines. Results A. terreus was the most species detected, followed by A. nidulans, A. latus, A. ochraceus, and A. citrinoterreus, respectively. The analysis of the benA gene showed the presence of 12 distinct genotypes among the A. terreus isolates. The other species did not show any intraspecies variation. CFG exhibited the lowest MEC50/MIC50 (0.007 μg/mL), followed by POS (0.125 μg/mL), VRC, ITC, ISA (0.25 μg/mL), RAV (0.5 μg/mL), and AMB (8 μg/mL). Among all the isolates, only 15.5% (7/45) were susceptible to AMB. Conclusion Antifungal susceptibility pattern of the uncommon Aspergillus species is useful to improve patient management and increase knowledge concerning the local epidemiology. Moreover, this information is necessary when an outbreak dealing with drug-resistant infections occurs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []