Protective role against hydrogen peroxide and fibroblast stimulation via Ce-doped TiO2 nanostructured materials General subjects

2016 
Cerium oxide (CeO2) and Ce-doped nanostructured materials (NMs) are being seen as innovative therapeutic tools due to their exceptional antioxidant effects; nevertheless their bio-applications are still in their infancy.TiO2, Ce–TiO2 and CeO2–TiO2 NMs were synthesized by a bottom-up microemulsion-mediated strategy and calcined during 7h at 650°C under air flux. The samples were compared to elucidate the physicochemical characteristics that determine cellular uptake, toxicity and the influence of redox balance between the Ce³⁺/Ce⁴⁺ on the cytoprotective role against an exogenous ROS source: H2O2. Fibroblasts were selected as a cell model because of their participation in wound healing and fibrotic diseases.Ce–TiO2 NM obtained via sol–gel reaction chemistry of metallic organic precursors exerts a real cytoprotective effect against H2O2 over fibroblast proliferation, while CeO2 pre-formed nanoparticles incorporated to TiO2 crystalline matrix lead to a harmful CeO2–TiO2 material. TiO2 was processed by the same pathways as Ce–TiO2 and CeO2–TiO2 NM but did not elicit any adverse or protective influence compared to controls.It was found that the Ce atoms source and its concentration have a clear effect on material's physicochemical properties and its subsequent influence in the cellular response. It can induce a range of biological reactions that vary from cytotoxic to cytoprotective.Even though there are still some unresolved issues and challenges, the unique physical and chemical properties of Ce-based NMs are fascinating and versatile resources for different biomedical applications.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []