Higher-order nonlinear equations for the electron-acoustic waves in a nonextensive electron-positron-ion plasma

2015 
A precise theoretical investigation has been made on electron-acoustic (EA) Gardner solitons (GSs) and double layers (DLs) in a four-component plasma system consisting of nonextensive hot electrons and positrons, inertial cold electrons, and immobile positive ions. The well-known reductive perturbation method has been used to derive the Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and Gardner equations along with their solitary wave as well as double layer solutions. It has been found that depending on the plasma parameters, the K-dV solitons and GSs are either compressive or rarefactive, whereas the mK-dV solitons are only compressive, and Gardner DLs are only rarefactive. The analytical comparison among the K-dV solitons, mK-dV solitons, and GSs are also investigated. It has been identified that the basic properties of such EA solitons and EA DLs are significantly modified due to the effects of nonextensivity and other plasma parameters related to plasma particle number densities and to temperature of different plasma species. The results of our present investigation can be helpful for understanding the nonlinear electrostatic structures associated with EA waves in various interstellar space plasma environments and cosmological scenarios (viz. quark-gluon plasma, protoneutron stars, stellar polytropes, hadronic matter, dark-matter halos, etc.)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    8
    Citations
    NaN
    KQI
    []