Experimental study on improving the yield of hemispherical distillers using CuO nanoparticles and cooling the glass cover

2022 
Abstract Water and energy scarcity is one of the most important and biggest challenges facing many countries around the world. In rural communities, the traditional energy sources utilized for produce the freshwater may be not available. So, the hemispherical solar distillers are a good choice to produce the freshwater, which characterized by having a large surface area for receive and condensed compared to traditional single-slope solar distillers. The present work aims to achieve the highest freshwater productivity from the hemispherical solar distillers by combining two of the most effective modifications, namely, use of CuO nanoparticles to increase the evaporation rate, and use of glass cover cooling technology to increase the condensation rate. To obtain the influences of combining two effective modifications on the productivity of hemispherical distillers, three hemispherical distillers were constructed and tested at same climate conditions, namely; the conventional hemispherical distiller which represent the reference distiller, modified hemispherical distiller with CuO nanoparticles, and modified hemispherical distiller with CuO nanoparticles and glass cover cooling technology. The results presented that the combination between two effective modifications (CuO nanoparticles with 0.3% concentration and glass cover cooling technology) represents the good option which improving the freshwater productivity to 7.9 L/m2/day compared to 3.85 L/m2/day for reference distiller with an improvement of 105.2%. Also, the utilization of these two combined effective modification with 0.3% CuO nanoparticles concentration improves the daily efficiency by 101.5% compared to reference distiller.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []