Pressure drop in two phase flow of condensing air-steam mixture inside PHE channels formed by plates with corrugations of different geometries

2021 
Abstract The pressure drop in the two-phase condensing flow of air-steam mixture inside channels of plate heat exchanger (PHE) with different geometries of corrugations is studied based on experiments and one-dimensional mathematical modelling. The experiments were made with five samples of the PHE channel. In three of them plates with corrugations inclination angles 30, 45 and 60° at the same height of corrugations 5 mm. The other two plates corrugations height was 7.5 and 10 mm at the same pitch to height ratio and inclination angle of 60°. The correlation of pressure drop data for all experimental samples by average process parameters is not able to give acceptable accuracy. The correlation for local pressure gradients in two-phase condensing flow is identified using a developed one-dimensional mathematical model. The model of separated flows of phases is employed for channel zones close to air-steam mixture entrance. Further on channel length with an increase of liquid phase quantities, its combination with the dispersed annular flow structure model is used. The proposed equations can be included in the mathematical model when designing PHE and optimising the geometrical form of corrugations on its plates for steam condensation processes from an air-steam mixture.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    1
    Citations
    NaN
    KQI
    []