Expression and characterization of a novel scorpine-like peptide Ev37, from the scorpion Euscorpiops validus

2013 
Abstract Scorpion venom contains a group of two-domain peptides that function to block potassium channels or have cytolytic activities. These peptides, whose functions are poorly studied, are named β-KTx or scorpine-like peptides. Ev37, the first identified gene in the Euscorpiidae family, which encoded a novel scorpine-like peptide, was cloned from the venom cDNA library of scorpion Euscorpiops validus . Sequence analysis showed that the mature Ev37 peptide contained 78 amino acid residues, which formed two structural domains: a putative α-helical N-terminus and a C-terminus with the cysteine-stabilized α/β motif. The peptide rEv37 and two truncated peptides representing the individual structural domains (Ev37-N and Ev37-C) were expressed in Escherichia coli and purified for functional study. Unlike classic scorpine-like peptides, rEv37 and truncated peptides showed no cytolytic activity against bacteria or eukaryotic cells. Interestingly, rEv37 selectively inhibited Kv1.3 channel without effectively blocking Kv1.1 and Kv1.2 channels. Neither Ev37-N nor Ev37-C blocked Kv1.3 channel, suggesting that both the N-terminal and C-terminal domain of Ev37 are likely involved in the interaction with Kv1.3 channel. These results not only enrich our knowledge of scorpion toxins from scorpine-like subfamily but also provide a novel template with unique structure for designing new types of selective Kv1.3 blockers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    15
    Citations
    NaN
    KQI
    []