Functional Cross‐talk among Cytokines, T‐Cell Receptor, and Glucocorticoid Receptor Transcriptional Activity and Action

2006 
: The main communicators between the neuroendocrine and immune systems are cytokines and hormones. We studied the molecular interaction between immune activators (cytokines and T-cell receptors [TCRs]) and the glucocorticoid receptor (GR) in cells in which glucocorticoids play a key regulatory function: (1) cellular targets of TNF-induced cytotoxicity; (2) the pituitary gland; and (3) thymic cells. Cytokines (TNF-alpha and IL-1) increase glucocorticoid-induced transcriptional activity of the GR via the DNA-glucocorticoid response elements (GREs) in cells transfected with a glucocorticoid-inducible reporter plasmid. As a functional physiological correlate, priming of fibroblastic cells with a low dose of TNF significantly increases the sensitivity to glucocorticoid inhibition of TNF-induced apoptosis (without involving NF-κB). Priming of AtT-20 mouse corticotrophs and Cushing pituitary cells with IL-1 increases the sensitivity to glucocorticoid inhibition of CRH-induced ACTH/POMC expression. In thymocytes, activation of the T-cell receptor counteracts the glucocorticoid-induced thymic apoptosis by downregulating the glucocorticoid action on GRE-driven apoptotic genes. Thus, cytokines and immune mediators prevent their own deleterious effects not only by stimulating glucocorticoid production, but also by modifying the sensitivity of the target cells for the glucocorticoid counter-regulatory action. The functional cross-talk at the molecular level between immune signals and glucocorticoids is essential to determine the biological response to both mediators and constitutes the ultimate level of interaction between the immune and neuroendocrine mediators.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    28
    Citations
    NaN
    KQI
    []