Effect of Temperature Field and Stress Field of Different Crack Behavior on Twins and Dislocations under Mg Alloy Rolling

2021 
Aiming at the problem of the poor plasticity of magnesium alloy leading to serious edge cracks in the rolling process, this paper conducts a systematic study on the crack suppression mechanism of rolling under different thickness reductions. Using restricted rolling and conventional rolling, comparing the microstructure evolution of the plate after rolling, and combining the information of the simulated temperature field and stress field of the plates, the behavior of twins and dislocations under different thickness reductions is explained, and the influence of serious damage caused by single-pass hot rolling of magnesium alloy is explored. The compressive stress fields along with the transverse and normal directions under restricted rolling cause the compression twins to mature into secondary twins under rolling with small thickness reduction and induce a large number of tensile twins when the thickness reduction amount is increased. The multiple slips activated by the higher temperature field at the edge of the small thickness reduction amount cause dislocations to be distributed inside and outside the twins, while the edge with large thickness reduction can activate more slip due to the high-temperature field resulting from friction, resulting in the twin be destroyed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []