Layout and performance of HPK prototype LGAD sensors for the High-Granularity Timing Detector
2020
Abstract The High-Granularity Timing Detector is a detector proposed for the ATLAS Phase II upgrade. The detector, based on the Low-Gain Avalanche Detector (LGAD) technology, will cover the pseudo-rapidity region of 2 . 4 | η | 4 . 0 with two end caps on each side and a total area of 6.4 m2. The timing performance can be improved by implanting an internal gain layer that can produce signals with a fast rising edge. It significantly improves the signal-to-noise ratio. The required average timing resolution per track for a minimum ionizing particle is 30ps at the start and 50ps at the end of the HL-LHC operation. This is achieved with several layers of LGAD. The innermost region of the detector would accumulate a 1MeV neutron-equivalent fluence up to 2.5 × 1015 neq/cm2 including a safety factor of 1.5 before being replaced during the scheduled shutdowns. The addition of this new detector is expected to play an important role in the mitigation of high pile-ups at the HL-LHC. The layout and performance of the various versions of LGAD prototypes produced by Hamamatsu (HPK) have been studied by the ATLAS Collaboration. The breakdown voltages, depletion voltages, inter-pad gaps, collected charge as well as the time resolution have been measured and the production yield of large size sensors has been evaluated.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
7
References
1
Citations
NaN
KQI