Preparation of hierarchically porous carbon from cellulose as highly efficient adsorbent for the removal of organic dyes from aqueous solutions

2019 
Abstract The hierarchically porous carbons were prepared from cellulose by a one-step method and studied as dye-adsorbents using chrysoidine as a model. With the increase of holding temperature, the prepared porous carbons had larger specific surface area and became more effective. Kinetic analysis revealed that adsorption kinetics obeyed the pseudo-second order kinetic model and adsorption equilibrium could reach within 1 h. The studies on isotherm indicated that the adsorption process could be best described by the Langmuir isotherm model and the maximum adsorption capacities was 598.8 mg g −1 . Thermodynamic parameters demonstrated that the adsorption process was exothermic and spontaneous. Moreover, the porous carbon could effectively remove some other common dyes. Importantly, the prepared porous carbon was able to remove 98% of chrysoidine from polluted river water and its adsorption efficiency was inappreciably influenced by the water matrix. These results shown that the hierarchically porous carbons synthesized from biomass in this study had a wide application in water treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    13
    Citations
    NaN
    KQI
    []