Targeted particulate adhesion to cellulose surfaces mediated by bifunctional fusion proteins.

2007 
The adhesion of particles to surfaces is an integral element in many commercial and biological applications. In this article, we report on the direct measurements of protein-mediated deposition and binding of particles to model cellulose surfaces. This system involves a family of heterobifunctional fusion proteins that bind specifically to both a red dye and cellulose. Amine-coated particles were labeled with a red dye, and a fusion protein was attached to these particles at various number densities. The strength of adhesion of a single particle to a cellulose fiber was measured using micropipette manipulation as a function of the specificity of the protein and its surface density and contact time. The frequency and force of adhesion were seen to increase with contact time in fiber experiments. The dynamics of adhesion of the functionalized particles to cellulose-coated glass slides under controlled hydrodynamic flow was explored using a flow chamber for two scenarios: detachment of bound particles and attachment of particles in suspension as a function of the shear rate and surface density of protein. Highly specific adhesion was observed. The critical shear rate for particle detachment was an increasing function of cellulose binding domain (CBD) density on particle surface. A rapid irreversible attachment of particles to cellulose was observed under flow. Using a family of proteins that were divalent for binding either the red dye or cellulose, we found that particle detachment occurred because of the failure of the cellulose-CBD bond. A comparison of fiber binding and particle detachment results suggests that forces of adhesion of particles to cellulose of up to 2 nN can be obtained with this molecular system through multiple interactions. This study, along with the adhesion simulations currently under development, forms the basis of particulate design for specific adhesion applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    9
    Citations
    NaN
    KQI
    []