Studies on localization and protein ligands of Galleria mellonella apolipophorin III during immune response against different pathogens

2018 
Abstract A lipid-binding protein apolipophorin III (apoLp-III), an exchangeable component of lipophorin particles, is involved in lipid transport and immune response in insects. In Galleria mellonella , apoLp-III binding to high-density lipophorins and formation of low-density lipophorin complexes upon immune challenge was reported. However, an unanswered question remains whether apoLp-III could form different complexes in a pathogen-dependent manner. Here we report on pathogen- and time-dependent alterations in the level of apoLp-III free and lipophorin-bound form that occur in the hemolymph and hemocytes shortly after immunization of G. mellonella larvae with different pathogens, i.e. Gram-negative bacterium Escherichia coli , Gram-positive bacterium Micrococcus luteus , yeast-like fungus Candida albicans , and filamentous fungus Fusarium oxysporum . These changes were accompanied by differently persistent re-localization of apoLp-III in the hemocytes. The apoLp-III-interacting proteins were recovered from immune hemolymph by affinity chromatography on a Sepharose bed with immobilized anti-apoLp-III antibodies. ApoLp-I, apoLp-II, hexamerin, and arylphorin were identified as main components that bound to apoLp-III; the N-terminal amino acid sequences of G. mellonella apoLp-I and apoLp-II were determined for the first time. In the recovered complexes, the pathogen-dependent differences in the content of individual apolipophorins were detected. Apolipophorins may thus be postulated as signaling molecules responding in an immunogen-dependent manner in early steps of G. mellonella immune response.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    16
    Citations
    NaN
    KQI
    []