Application of a spectroscopic method to estimate the olive oil oxidative status.

2010 
A rapid Fourier transformed infrared (FTIR) attenuated total reflectance (ATR) spectroscopic method coupled with partial least squares (PLS), was developed to estimate the oxidation degree of extra virgin olive oil (EVOO). The reference values of EVOO oxidation for the FTIR calibration were obtained by the specific absorptions at 232 and 270 nm, due to the presence of conjugated diene (CD) and conjugated triene (CT) groups, as monitored by the UV spectrophotometric determination. Specific washing procedures were applied to the EVOO to obtain EVOOP and EVOOTP samples, without phenolic compounds and without tocopherols and phenols, respectively. To obtain different oxidation degrees covering wide CD and CT ranges, EVOO, EVOOP, and EVOOTP samples were subjected to a forced oxidation at 60°C for 20 days and aliquots of the oils were daily analyzed. Regression of the FTIR/PLS-predicted CD and CT of individual oxidized oils EVOO, EVOOP, EVOOTP, and all combined oils (EVOOALL) against UV–Visible reference values demonstrated the good quality of the models in terms of R2 and RMSECV values. The results of the study indicated that a strong correlation existed between FTIR and UV–Visible peak intensities. Practical applications: The FTIR-ATR method coupled with PLS elaboration was developed and applied to predict the oxidation degree of EVOO samples with considerable advantages in terms of simplicity, analysis time, and solvent consumption as compared to the standard method. Moreover, suitable adjustments of the equipment could permit a rapid control at-line in oil sector.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    22
    Citations
    NaN
    KQI
    []