Highly Selective Molecular Catalysts for the CO2-to-CO Electrochemical Conversion at Very Low Overpotential. Contrasting Fe vs Co Quaterpyridine Complexes upon Mechanistic Studies

2018 
[MII(qpy)(H2O)2]2+ (M = Fe, Co; qpy: 2,2′:6′,2″:6″,2‴-quaterpyridine) complexes efficiently catalyze the electrochemical CO2-to-CO conversion in acetonitrile solution in the presence of weak Bronsted acids. Upon performing cyclic voltammetry studies, controlled-potential electrolysis, and spectroelectrochemistry (UV–visible and infrared) experiments together with DFT calculations, catalytic mechanisms were deciphered. Catalysis is characterized by high selectivity for CO production (selectivity >95%) in the presence of phenol as proton source. Overpotentials as low as 240 and 140 mV for the Fe and Co complexes, respectively, led to large CO production for several hours. In the former case, the one-electron-reduced species binds to CO2, and CO evolution is observed after further reduction of the intermediate adduct. A deactivation pathway has been identified, which is due to the formation of a Fe0qpyCO species. With the Co catalyst, no such deactivation occurs, and the doubly reduced complex activates CO2....
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    82
    Citations
    NaN
    KQI
    []