Modelling modulus of elasticity of Pinus pinaster Ait. in northwestern Spain with standing tree acoustic measurements, tree, stand and site variables

2014 
Aim of study: Modelling the structural quality of Pinus pinaster Ait. wood on the basis of measurements made on standing trees is essential because of the importance of the species in the Galician forestry and timber industries and the good mechanical properties of its wood. In this study, we investigated how timber stiffness is affected by tree and stand properties, climatic and edaphic characteristics and competition. Area of study: The study was performed in Galicia, north-western Spain. Material and methods: Ten pure and even-aged P. pinaster stands were selected and tree and stand variables and the stress wave velocity of 410 standing trees were measured. A sub-sample of 73 trees, representing the variability in acoustic velocity, were felled and sawed into structural timber pieces (224) which were subjected to a bending test to determine the modulus of elasticity (MOE). Main results: Linear models including wood properties explained more than 97%, 73% and 60% of the observed MOE variability at site, tree and board level, respectively, with acoustic velocity and wood density as the main regressors. Other linear models, which did not include wood density, explained more than 88%, 69% and 55% of the observed MOE variability at site, tree and board level, respectively, with acoustic velocity as the main regressor. Moreover, a classification tree for estimating the visual grade according to standard UNE 56544:2011 was developed. Research highlights: The results have demonstrated the usefulness of acoustic velocity for predicting MOE in standing trees. The use of the fitted equations together with existing dynamic growth models will enable preliminary assessment of timber stiffness in relation to different silvicultural alternatives used with this species.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    15
    Citations
    NaN
    KQI
    []