Construction of tellurium-doped mesoporous bioactive glass nanoparticles for bone cancer therapy by promoting ROS-mediated apoptosis and antibacterial activity.

2021 
Abstract The commonly used treatment methods for bone cancer include chemotherapy, surgery and radiotherapy, but there are disadvantages such as nonspecific distribution, high toxicity of chemotherapy drugs, implantable infections and low monitoring. Nanoparticles are the new development direction of nanomedicine in cancer treatment. Structural characteristics of nanoparticles make it an excellent model for targeting and penetrating cancer-induced abnormal cell growth. In this study, a kind of novel and interesting tellurium ion doped mesoporous bioactive glasses (Te-MBG) nanoparticles were successfully synthesized by a simple sol-gel method, which had uniform spherical morphology (≈ 500 nm), high surface area (> 300 m2/g) and mesopore volume (> 0.30 cm3/g). Results found that Te doping does not affect the mineralization and degradation of the MBG nanoparticles. Meanwhile, compared to the undoped MBG, Te doped MBG not merely had the ability to promote MG63 cell apoptosis to inhibit bone cancer growth by ROS-mediated, but also had significant antibacterial activity. This all depends on the concentration of Te doping. It can be seen that Te-MBG nanoparticles can not only potentially fill bone defects caused by bone cancer removal, but also induce cancer cell apoptosis by tellurium release inducing reactive oxygen species (ROS) excessive production to inhibit bone cancer formation. This study provides a feasible strategy for the development of Te-MBG nanoparticles as well as their evaluation and basic research for bone cancer therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    0
    Citations
    NaN
    KQI
    []