Human cerebral cortex networks use expanding and contracting state dynamic to shape cortical functions

2020 
We lack viable explanations of how collective activities of neurons in networks produce brain functions. We recorded field potentials from many local networks in the human cerebral cortex during a wide variety of brain functions. The network dynamics showed that each local cortical network produced fluctuating attractor states. The state trajectories continuously stretched and contracted during all brain functions, leaving no stable patterns. Different local networks all produced this dynamic, despite different architectures. Single trial stimuli and tasks modified the stretching and contractions. These modified fluctuations cross-correlated among particular networks during specific brain functions. Spontaneous activity, rest, sensory, motor and cognitive functions all emerged from this dynamic. Its mathematical structure provides a general theoretical model of cortical dynamics that can be tested experimentally. This universal dynamic is a simple functional organizing principle for brain functions at the mm3 scale that is distinct from existing frameworks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    0
    Citations
    NaN
    KQI
    []