Design and Fabrication of Barker Coded Surface Acoustic Wave (SAW) Correlator at 2.45 GHz for Low-Power Wake-up Receivers

2020 
Low-power receivers use direct-detection receiver architecture for its design simplicity and its low power dissipation. However, the direct-detection based receivers suffer from co-channel interference which significantly degrades the communication reliability. Co-channel interference robustness can be improved by using a BPSK Barker code modulated Surface Acoustic Wave (SAW) correlator as a prior stage to the RF direct detection circuit. This paper reports in details the design, fabrication and measurements of a 2.45 GHz SAW correlator with 13 bits length Barker code. The device is fabricated on Lithium Niobate LiNbO3 substrate and it is composed of an input non-coded Inter Digital Transducers (IDT), a Piezoelectric substrate and an output coded IDT. The device wavelength λ is set to 1.6 µm, considering a phase velocity of the wave equal to 3970 m.s-1. Several configurations of the device were designed and fabricated, particularly varying the aperture and the non-coded IDT length to find out the optimal device configuration. All devices were found to operate with Insertion Loss (IL) ranging from 12 to 15 dB at 2.45 GHz with a tip probing measurement setup, while a packaged sample has an IL of 12.45 dB at 2.44 GHz mounted on a PCB with external 50 Ω LC matching network. Additionally, time-domain measurement for the packaged device shows that the output has a correlation peak with a peak-to-side-lobe (PSL) ratio of 4:1 for a −0.5 dBm input BPSK Barker code signal.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    0
    Citations
    NaN
    KQI
    []