Laser-based metastable krypton generation.

2018 
We demonstrate the generation of metastable krypton in the long-lived 1s5 state using laser excitation. The atoms are excited through a two-photon absorption process into the 2p6 state using a pulsed optical parametric oscillator laser operating near 215 nm, after which the atoms decay quickly into the metastable state with a branching ratio of 75 %. The interaction dynamics are modeled using density matrix formalism and, by combining this with experimental observations, we are able to calculate photo-ionization and two-photon absorption cross-sections. When compared to traditional approaches to metastable production, this new approach shows great potential for high-density metastable krypton production with minimal heating of the sample. Here, we show metastable production efficiencies of up to 2% per pulse. The new experimental results gained here, when combined with the density matrix model we have developed, suggest that fractional efficiencies up to 30% are possible under optimal conditions.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []