Electronic Traps and Their Correlations to Perovskite Solar Cell Performance via Compositional and Thermal Annealing Controls

2019 
Herein, underlying factors for enabling efficient and stable performance of perovskite solar cells are studied through nanostructural controls of organic–inorganic halide perovskites. Namely, MAPbI3, (FA0.83MA0.17)Pb(I0.83Br0.17)3, and (Cs0.10FA0.75MA0.15)Pb(I0.85Br0.15)3 perovskites (abbreviated as MA, FAMA, and CsFAMA, respectively) are examined with a grain growth control through thermal annealing. FAMA- and CsFAMA-based cells result in stable photovoltaic performance, while MA cells are sensitively dependent on the perovskite grain size dominated by annealing time. Micro-/nanoscopic features are comprehensively analyzed to unravel the origin that is directly correlated to the cell performance with the applications of electronic-trap characterizations such as photoconductive noise microscopy and capacitance analyses. It is revealed that CsFAMA has a lower trap density compared to MA and FAMA through the analyses of 1/f noises and trapping/detrapping capacitances. Also, an open-circuit voltage (Voc) cha...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    36
    Citations
    NaN
    KQI
    []