2-5A Antisense Telomerase RNA Therapy for Intracranial Malignant Gliomas

2000 
Malignant gliomas are the most common intracranial tumors and are considered incurable. Therefore, exploration of novel therapeutic modalities is essential. Telomerase is a ribonucleoprotein enzyme that is detected in the vast majority of malignant gliomas but not in normal brain tissues. We, therefore, hypothesized that telomerase inhibition could be a very promising approach for the targeted therapy of malignant gliomas. Thus, 2-5A (5′-phosphorylated 2′-5′-linked oligoadenylate)-linked antisense against human telomerase RNA component (2-5A-anti-hTER) was investigated for its antitumor effect on an intracranial malignant glioma model. 2-5A is a mediator of one pathway of IFN actions by activating RNase L, resulting in RNA degradation. By linking 2-5A to antisense, RNase L degrades the targeted RNA specifically and effectively. Prior to the experiments using intracranial tumor models in nude mice, we modified the in vitro and in vivo treatment modality of 2-5A-anti-hTER using a cationic liposome to enhance the effect of 2-5A-anti-hTER. Here we demonstrate that 2-5A-anti-hTER complexed with a cationic liposome reduced the viability of five malignant glioma cell lines to 20–43% within 4 days but did not influence the viability of cultured astrocytes lacking telomerase. Furthermore, treatment of intracranial malignant gliomas in nude mice with 2-5A-anti-hTER was therapeutically effective compared with the control ( P < 0.01). These findings clearly suggest the therapeutic potentiality of 2-5A-anti-hTER as a novel approach for the treatment of intracranial malignant gliomas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    76
    Citations
    NaN
    KQI
    []