Hypotonic Activation of Volume-sensitive Outwardly Rectifying Anion Channels (VSOACs) Requires Coordinated Remodeling of Subcortical and Perinuclear Actin Filaments

2005 
Cell volume regulation requires activation of volume-sensitive outwardly rectifying anion channels (VSOACs). The actin cytoskeleton may participate in the activation of VSOACs but the roles of the two major actin pools remain undefined. We hypothesized that structural reorganization of both subcortical and perinuclear actin filaments (F-actin) contributes to the hypotonic activation of VSOACs. Hypotonic stress of pulmonary artery smooth muscle cells (PASMCs) was associated with reorganization of both peripheral and perinuclear F-actin, and with activation of VSOACs. Preincubation with cytochalasin D caused prominent dissociation of perinuclear, but not of subcortical F-actin. Cytochalasin D failed to induce isotonic activation and delayed the hypotonic activation of VSOACs. F-actin stabilization by phalloidin delayed both the hypotonic stress-induced dissociation of membrane-associated actin filaments and the activation kinetics of VSOACs. PKCe, which was proposed to phosphorylate and inhibit VSOACs, colocalized primarily with F-actin and the net kinase activity remained unchanged during hypotonic cell swelling. In conclusion, normal hypotonic activation of VSOACs requires disruption of peripheral F-actin but intact perinuclear F-actin; interference with this pattern of actin reorganization delays the activation kinetics of VSOACs. The cell swelling-induced peripheral actin dissociation may underlie the observed translocation of PKCe, which leads to a net decrease of PKCe inhibitory activity in submembranous sites. Thus, reorganization of actin and PKCe may establish conditions for mechano- and/or signal transduction-mediated activation of VSOACs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    10
    Citations
    NaN
    KQI
    []