Biostimulation of Wound Healing in Vivo by a Helium-neon Laser

1987 
Clinical observations have suggested that low-energy lasers might stimulate wound healing. To understand the mechanism of the biostimulation, we previously examined the effects of low-energy lasers on collagen production by human skin fibroblasts and reported an increase of collagen synthesis in vitro. To examine the effects of low-energy lasers in vivo, hairless mice were experimentally wounded, sutured, and subjected to laser irradiation by a helium-neon laser with a power output of 1.56 mW and an energy fluence of 1.22 Joules/cm2. Experimental wounds were subjected to laser treatment every other day for 2 months; control wounds remained untreated. Specimens from the wounds were then examined for histological findings, tensile strength, and total collagen content. Results demonstrated a considerable improvement in the tensile strength of the laser-irradiated wounds at 1 and 2 weeks. Furthermore, the total collagen content was significantly increased at 2 months when compared with control wounds. These results suggest a beneficial effect of the helium-neon laser on wound healing in vivo.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    214
    Citations
    NaN
    KQI
    []