Multiplicity results for nonlocal fractional $p$-Kirchhoff equations via Morse theory

2016 
In this paper, we apply Morse theory and local linking to study the existence of nontrivial solutions for Kirchhoff type equations involving the nonlocal fractional $p$-Laplacian with homogeneous Dirichlet boundary conditions: \begin{align*} \begin{cases} \!\bigg[M\bigg(\displaystyle\iint_{\mathbb{R}^{2N}}\!\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy\bigg)\bigg]^{p-1} \!(-\Delta)_p^su(x)=f(x,u)&\mbox{in }\Omega,\\ u=0&\mbox{in } \mathbb{R}^{N}\setminus\Omega, \end{cases} \end{align*} where $\Omega$ is a smooth bounded domain of $\mathbb{R}^N$, $(-\Delta)_p^s$ is the fractional $p$-Laplace operator with $0< s< 1< p< \infty$ with $sp< N$, $M \colon \mathbb{R}^{+}_{0}\rightarrow \mathbb{R}^{+}$ is a continuous and positive function not necessarily satisfying the increasing condition and $f$ is a Caratheodory function satisfying some extra assumptions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    10
    Citations
    NaN
    KQI
    []