Training deep quantum neural networks

2020 
Neural networks enjoy widespread success in both research and industry and, with the advent of quantum technology, it is a crucial challenge to design quantum neural networks for fully quantum learning tasks. Here we propose a truly quantum analogue of classical neurons, which form quantum feedforward neural networks capable of universal quantum computation. We describe the efficient training of these networks using the fidelity as a cost function, providing both classical and efficient quantum implementations. Our method allows for fast optimisation with reduced memory requirements: the number of qudits required scales with only the width, allowing deep-network optimisation. We benchmark our proposal for the quantum task of learning an unknown unitary and find remarkable generalisation behaviour and a striking robustness to noisy training data. It is hard to design quantum neural networks able to work with quantum data. Here, the authors propose a noise-robust architecture for a feedforward quantum neural network, with qudits as neurons and arbitrary unitary operations as perceptrons, whose training procedure is efficient in the number of layers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    92
    Citations
    NaN
    KQI
    []