Structure and Evolution of Ordered Domains in Deeply Quenched Polyethylene Melt

2007 
Solidification of polymeric materials, a complex process in which the entangled polymer melt becomes a composite of amorphous and crystalline domains, strongly depends on how the melt is cooled below its crystallization temperature. If cooling is at moderate rates, the most common and well. understood mechanism is via nucleation and growth of spherulites, but special cases exist where crystallization is preceded by a pre pre-transition state induced by density fluctuations. Such multi-step crystallization scenarios are suggested by many experiments, and recent theoretical and simulation work. Via energetic and geometric analyses, we have examined the structure of mesomorphic domains and the dynamics of their formation and evolution, including atomic scale details of molecular addition to ordered domains, as well as particle dynamics in the system, including high mobility jumps in the ordered domains at wavelengths matching the monomer spacing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []