Cardiac Magnetic Resonance Imaging-Based Right Ventricular Strain Analysis for Assessment of Coupling and Diastolic Function in Pulmonary Hypertension

2019 
Abstract Objectives This study sought to compare cardiac magnetic resonance (CMR) imaging-derived right ventricular (RV) strain and invasively measured pressure-volume loop-derived RV contractility, stiffness, and afterload and RV-arterial coupling in pulmonary hypertension (PH). Background In chronic RV pressure overload, RV-arterial uncoupling is considered the driving cause of RV maladaptation and eventual RV failure. The pathophysiological and clinical value of CMR-derived RV strain relative to that of invasive pressure-volume loop-derived measurements in PH remains incompletely understood. Methods In 38 patients with PH, global RV CMR strain was measured within 24 h of diagnostic right heart catheterization and conductance (pressure-volume) catheterization. Associations were evaluated by correlation, multivariate logistic binary regression, and receiver operating characteristic analyses. Results Long-axis RV longitudinal and radial strain and short-axis RV radial and circumferential strain (mean ± SD or median [interquartile range]) were −18.0 ± 7.0%, 28.9% [IQR: 17.4% to 46.6%]; 15.6 ± 6.2%; and −9.8 ± 3.5%, respectively. RV-arterial coupling (end-systolic [Eds]/arterial elastance [Ea]) was 0.76 (IQR: 0.47 to 1.07). Peak RV strain correlated with Ees/Ea, afterload (Ea), RV diastolic dysfunction (Tau), and stiffness (end-diastolic elastance [Eed]) but not with contractility (Ees). In multivariate analysis, long-axis RV radial strain was associated with RV-arterial uncoupling (Ees/Ea:  Conclusions In chronic RV overload, CMR-determined RV strain is associated with RV-arterial uncoupling and RV end-diastolic stiffness and represents a promising noninvasive alternative to current invasive methods for assessment of RV-arterial coupling and end-diastolic stiffness in patients with PH. (Right Ventricular Haemodynamic Evaluation and Response to Treatment [Rightheart I]; NCT03403868)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    35
    Citations
    NaN
    KQI
    []