Compensating Delays and Noises in Motion Control of Autonomous Electric Vehicles by Using Deep Learning and Unscented Kalman Predictor

2018 
Accurate knowledge of the vehicle states is the foundation of vehicle motion control. However, in real implementations, sensory signals are always corrupted by delays and noises. Network induced time-varying delays and measurement noises can be a hazard in the active safety of over-actuated electric vehicles (EVs). In this paper, a brain-inspired proprioceptive system based on state-of-the-art deep learning and data fusion technique is proposed to solve this problem in autonomous four-wheel actuated EVs. A deep recurrent neural network (RNN) is trained by the noisy and delayed measurement signals to make accurate predictions of the vehicle motion states. Then unscented Kalman predictor, which is the adaption of unscented Kalman filter in time-varying-delay situations, combines the predictions of the RNN and corrupted sensory signals to provide better perceptions of the locomotion. Simulations with a high-fidelity, CarSim, full-vehicle model are carried out to show the effectiveness of our RNN framework and the entire proprioceptive system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    9
    Citations
    NaN
    KQI
    []