High-speed mid-infrared hyperspectral imaging using quantum cascade lasers

2017 
We report on a standoff chemical detection system using widely tunable external-cavity quantum cascade lasers (ECQCLs) to illuminate target surfaces in the mid infrared (λ = 7.4 – 10.5 μm). Hyperspectral images (hypercubes) are acquired by synchronously operating the EC-QCLs with a LN 2 -cooled HgCdTe camera. The use of rapidly tunable lasers and a high-frame-rate camera enables the capture of hypercubes with 128 x 128 pixels and >100 wavelengths in 2 area at 5-m standoff. Raw hypercubes are post-processed to generate a hypercube that represents the surface reflectance relative to that of a diffuse reflectance standard. Results will be shown for liquids (e.g., silicone oil) and solid particles (e.g., caffeine, acetaminophen) on a variety of surfaces (e.g., aluminum, plastic, glass). Signature spectra are obtained for particulate loadings of RDX on glass of 2 .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    8
    Citations
    NaN
    KQI
    []