Using a deep learning network to recognize low back pain in static standing
2018
AbstractLow back pain (LBP) remains one of the most prevalent musculoskeletal disorders, while algorithms that able to recognise LBP patients from healthy population using balance performance data are rarely seen. In this study, human balance and body sway performance during standing trials were utilised to recognise chronic LBP populations using deep neural networks. To be specific, 44 chronic LBP and healthy individuals performed static standing tasks, while their spine kinematics and centre of pressure were recorded. A deep learning network with long short-term memory units was used for training, prediction and implementation. The performance of the model was evaluated by: (a) overall accuracy, (b) precision, (c) recall, (d) F1 measure, (e) receiver-operating characteristic and (f) area under the curve. Results indicated that deep neural networks could recognise LBP populations with precision up to 97.2% and recall up to 97.2%. Meanwhile, the results showed that the model with the C7 sensor output perf...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
40
References
17
Citations
NaN
KQI